Identify the terms, their coefficients for each of the following expressions.
(i) 5xyz2 – 3zy
(ii) 1 + x + x2
(iii) 4x2y2 – 4x2y2z2 + z2
(iv) 3 – pq + qr – rp
(v) x/2+y/2 - xy
(vi) 0.3a – 0.6ab + 0.5b
Q 2.
Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these categories?
x + y, 1000, x + x2 + x3 + x4, 7 + y + 5x, 2y – 3y2, 2y – 3y2 + 4y3, 5x – 4y + 3xy, 4z – 15z2,
ab + bc + cd + da, pqr, p2q + pq2, 2p + 2q
Q 3.
Add the following :
(i) ab – bc, bc – ca, ca – ab
(ii) a – b + ab, b – c + bc, c – a + ac
(iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2
(iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl.
Q 4.
(A) Subtract 4a – 7ab + 3b + 12 from
12a – 9ab + 5b – 3
(B) Subtract 3xy + 5yz – 7zx from
5xy – 2yz – 2zx + 10xyz
(C) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q
Q 5.
Find the product of the following pairs of monomials.
(i) 4, 7p
(ii) – 4p, 7p
(iii) – 4p, 7pq
(iv) 4p3, – 3p
(v) 4p, 0.
Q 6.
Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively. (p, q); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)
SOLUTION:Q 7.
SOLUTION:
Q 8.
Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5a, 3a2, 7a4
(ii) 2p, 4q, 8r
(iii) xy, 2x2y, 2xy2
(iv) a, 2b, 3c
Q 9.
Obtain the product of
(i) xy, yz, zx
(ii) a, – a2, a3
(iii) 2, 4y, 8y2, 16y3
(iv) a, 2b, 3c, 6abc
(v) m, – mn, mnp
Q 10.
Carry out the multiplication of the expressions in each of the following pairs.
(i) 4p, q + r
(ii) ab, a – b
(iii) a + b, 7a2b2
(iv) a2 – 9, 4a
(v) pq + qr + rp, 0
Q 11.
Complete the table.
Q 12.
Find the product.
(i)(a2) × (2a22) × (4a26)
(ii)
(iii)
(iv) x × x2 × x3 × x4
Q 13.
(A)> Simplify 3x(4x – 5) + 3 and find its values for
(i) x = 3
(ii) x=1/2.
(B) Simplify a(a2 + a + 1) + 5 and find its value for
(i) a = 0
(ii) a = 1
(iii) a = – 1
Q 14.
(A) Add : p(p – q), q(q – r) and r(r – p)
(B) Add : 2x(z – x – y) and 2y(z – y – x)
(C) Subtract : 3l(l – 4m + 5n) from
4l(10n – 3m + 2l)
(D) Subtract : 3a(a + b + c) –2b (a – b + c) from
4c(– a + b + c)
Q 15.
Multiply the binomials.
(i) (2x + 5) and (4x – 3)
(ii) (y – 8) and (3y – 4)
(iii) (2.5l – 0.5m) and (2.5l + 0.5m)
(iv) (a + 3b) and (x + 5)
(v) (2pq + 3q2) and (3pq – 2q2)
(vi)
Q 16.
Find the product.
(i) (5 – 2x) (3 + x)
(ii) (x + 7y) (7x – y)
(iii) (a2 + b) (a + b2)
(iv) (p2 – q2) (2p + q)
Q 17.
Simplify.
(i) (x2 – 5) (x + 5) + 25
(ii) (a2 + 5) (b3 + 3) + 5
(iii) (t + s2) (t2 – s)
(iv) (a + b) (c – d) + (a – b) (c + d) + 2(ac + bd)
(v) (x + y) (2x + y) + (x + 2y) (x – y)
(vi) (x + y) (x2 – xy + y2)
(vii) (1.5x – 4y) (1.5x + 4y + 3) – 4.5x + 12y
(viii) (a + b + c) (a + b – c)
Q 18.
Use a suitable identity to get each of the following products.
(i) (x + 3) (x + 3)
(ii) (2y + 5) (2y + 5)
(iii) (2a – 7) (2a – 7)
(iv) (3a-1/2)(3a-1/2)
(v) (1.1m – 0.4) (1.1m + 0.4)
(vi) (a2 + b2) (– a2 + b2)
(vii) (6x – 7) (6x + 7)
(viii) (– a + c) (– a + c)
(ix) (x/2+3y/4)(x/2+3y/4)
(x) (7a – 9b) (7a – 9b)
Q 19.
Use the identity
(x + a) (x + b) = x2 + (a + b)x + ab
to find the following products.
(i) (x + 3) (x + 7)
(ii) (4x + 5) (4x + 1)
(iii) (4x – 5) (4x – 1)
(iv) (4x + 5) (4x – 1)
(v) (2x + 5y) (2x + 3y)
(vi) (2a2 + 9) (2a2 + 5)
(vii) (xyz – 4) (xyz – 2)
Q 20.
Find the following squares by using the identities.
(i) (b – 7)2
(ii) (xy + 3z)2
(iii) (6x2 – 5y)2
(iv) (2/3 m + 3/2 n)2
(v) (0.4p – 0.5q)2
(vi) (2xy + 5y)2
Q 21.
Simplify.
(i) (a2 – b2)2
(ii) (2x + 5)2 – (2x – 5)2
(iii) (7m – 8n)2 + (7m + 8n)2
(iv) (4m + 5n)2 + (5m + 4n)2
(v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2
(vi) (ab + bc)2 – 2ab2c
(vii) (m2 – n2m)2 + 2m3n2
Q 22.
Show that.
(i) (3x + 7)2 – 84x = (3x – 7)2
(ii) (9p – 5q)2 + 180pq = (9p + 5q)2
(iii) (4/3 m - 3/4 n)2 + 2mn=16/9 n2
(iv) (4pq + 3q)2 – (4pq – 3q)2 = 48pq2
(v) (a – b) (a + b) + (b – c) (b + c)
+ (c – a) (c + a) = 0
Q 23.
Using identities, evaluate.
Q 24.
Using a2 – b2 = (a + b) (a – b), find
(i) 512 – 492
(ii) (1.02)2 – (0.98)2
(iii) 1532 – 1472
(iv) 12.12 – 7.92.
Q 25.
Using (x + a) (x + b) = x2 + (a + b)x + ab, find
(i) 103 × 104
(ii) 5.1 × 5.2
(iii) 103 × 98
(iv) 9.7 × 9.8